Towards a More Efficient Multi-Objective Particle Swarm Optimizer
نویسندگان
چکیده
AbstrAct This chapter presents a hybrid between a particle swarm optimization (PSO) approach and scatter search. The main motivation for developing this approach is to combine the high convergence rate of the PSO algorithm with a local search approach based on scatter search, in order to have the main advantages of these two types of techniques. We propose a new leader selection scheme for PSO, which aims to accelerate convergence by increasing the selection pressure. However, this higher selection pressure reduces diversity. To alleviate that, scatter search is adopted after applying PSO, in order to spread the solutions previously obtained, so that a better distribution along the Pareto front is achieved. The proposed approach can produce reasonably good approximations of multi-objective problems of high dimensionality, performing only 4,000 fitness function evaluations. Test problems taken from the specialized literature are adopted to validate the proposed hybrid approach. Results are compared with respect to the NSGA-II, which is an approach representative of the state-of-the-art in the area.
منابع مشابه
EMOPSO: A Multi-Objective Particle Swarm Optimizer with Emphasis on Efficiency
This paper presents the Efficient Multi-Objective Particle Swarm Optimizer (EMOPSO), which is an improved version of a multiobjective evolutionary algorithm (MOEA) previously proposed by the authors. Throughout the paper, we provide several details of the design process that led us to EMOPSO. The main issues discussed are: the mechanism to maintain a set of well-distributed nondominated solutio...
متن کاملPaper Title (use style: paper title)
This paper presents a dynamic particle swarm optimization based search for optimal fusion configuration of sensors in distributed detection network in presence of a nonstationary binary symmetric channel. The wireless channel in sensor networks is a non-stationary random process, which moves the optima of the original problem, otherwise static. The optimal fusion configuration minimizes the pro...
متن کاملA Particle Swarm Optimizer for Multi-Objective Optimization
This paper proposes a hybrid particle swarm approach called Simple Multi-Objective Particle Swarm Optimizer (SMOPSO) which incorporates Pareto dominance, an elitist policy, and two techniques to maintain diversity: a mutation operator and a grid which is used as a geographical location over objective function space. In order to validate our approach we use three well-known test functions propos...
متن کاملA Multi-objective Particle Swarm Optimizer Enhanced with a Differential Evolution Scheme
Particle swarm optimization (PSO) and differential evolution (DE) are meta-heuristics which have been found to be very successful in a wide variety of optimization tasks. The high convergence rate of PSO and the exploratory capabilities of DE make them highly viable candidates to be used for solving multi-objective optimization problems (MOPs). In previous studies that we have undertaken [2], w...
متن کاملA Multi-objective Evolutionary Hybrid Optimizer
A new hybrid multi-objective, multivariable optimizer utilizing Strength Pareto Evolutionary Algorithm (SPEA), Non-dominated Sorting Differential Evolution (NSDE), and Multi-Objective Particle Swarm (MOPSO) has been created and tested. The optimizer features automatic switching among these algorithms to expedite the convergence of the optimal Pareto front in the objective function(s) space. The...
متن کامل